Intervals

In the traditional system, interval names reflect increasing tuning precision from right to left, as interval quality modifies diatonic ordinal size. Below, dark and light shadings indicate exclusive connections between these attributes.

Traditional
System of
Interval
Naming
Format Example
qualityordinal size spoken "minor third"
dd d m P M a aa 1 2 3 4 5 6 7 8 writtenm3

The Hunt system adds two optional indications for the precise tuning of each interval, modifying qualities by comma shift type, and further modifying by JND intonation quality.

Hunt
System of
Interval
Naming
FormatExample
JND intonation quality comma shift type quality ordinal size spoken"Perfect Large minor third"
dd d m P M a aa N S L W dd d m P M a aa 1 2 3 4 5 6 7 8 writtenP.Lm3

Traditional System

According to modern default tuning, all intervals differ by increments of 1 halfstep (h) of 100¢, the chromatic scale step of 12ET. The table below shows relationships between adjacent qualities for both perfect and imperfect intervals.

Traditional
System of
Simple
Interval
Naming
ordinal size
written 1 2 3 4 5 6 7 8
spoken "unison" or "prime" "second" "third" "fourth" "fifth" "sixth" "seventh" "octave"
default
sizes
h, ¢
0h
1-2h
100-200¢
3-4h
300-400¢
5-6h
500-600¢
6-7h
600-700¢
8-9h
800-900¢
10-11h
1000-1100¢
12h
1200¢
quality - Perfect intervals: 1, 4, 5, 8
written dd d P a aa
spoken "doubly diminished" "diminished" "Perfect" "augmented" "doubly augmented"
difference ±h, ¢ ±1h, 100¢ ±1h, 100¢ ±1h, 100¢ ±1h, 100¢
quality - Imperfect intervals: 2, 3, 6, 7
written d m M a
spoken "diminished" "minor" "Major" "augmented"
difference ±h, ¢ ±1h, 100¢ ±1h, 100¢ ±1h, 100¢

We can summarize interval relationships in 12ET starting with a major scale on a 12ET tone ruler.

Diatonic Intervals of the Major Scale in 12ET
P1   M2   M3 P4   P5   M6   M7 P8
  0h   1h
2h
3h
4h
5h
6h
7h
8h
9h
10h
11h
12h

To this table we can add staggered rows above and below showing how the diatonic pattern shifts to the right or to the left when interval qualities are made larger or smaller.

Chromatic Alteration of the Diatonic Intervals in 12ET
+2h aa1   aa2   aa3 aa4   aa5   aa6   aa7 aa8
+1h a1   a2   a3 a4   a5   a6   a7 a8
± 0h P1   M2   M3 P4   P5   M6   M7 P8
-1h d1   m2   m3 d4   d5   m6   m7 d8
-2h dd1   d2   d3 dd4   dd5   d6   d7 dd8

The ends of this parallelogram-shaped table can be chopped off to form a rectangle, since the boundaries for simple intervals must begin with the unison and end with the octave. The table should also be extended with another row at the bottom to show alterations resulting in doubly diminished thirds, sixths, and sevenths, since these intervals are also possible. Each of the resulting columns shows a group of enharmonic names for the twelve intervals of 12ET. In all cases, save the octave and the unison, there are at least three names per interval. For example, the names a1, m2, and dd3 all refer to the same interval in 12ET.

Chromatic Alteration of the Diatonic Intervals in 12ET
+2h     aa1   aa2   aa3 aa4   aa5   aa6  
+1h   a1   a2   a3 a4   a5   a6   a7
± h P1   M2   M3 P4   P5   M6   M7 P8
-1h   m2   m3 d4   d5   m6   m7 d8  
-2h d2   d3 dd4   dd5   d6   d7 dd8    
-3h   dd3         dd6   dd7        

The table below is a more compact version of the table above with the empty spaces removed. This table shows 38 simple interval names from the traditional system.

38 Traditional System Simple Interval Names
a1 aa1 a2 aa2 a3 aa3 aa4 a5 aa5 a6 aa6 a7
P1 m2 M2 m3 M3 P4 a4, d5 P5 m6 M6 m7 M7 P8
d2 dd3 d3 dd4 d4 dd5 dd6 d6 dd7 d7 dd8 d8

Interval names are shaded in the table above to show that not all of these names are used equally.

generally not used rarely used less commonly used common

For example, the minor second (m2) is commonly used, while the augmented unison (a1) is less commonly used, and the doubly diminished third (dd3) is generally not used. More interval names are possible in the traditional system, but they are not used. For example, the interval F:B is a quintupally augmented fourth, (aaaaa4) — possible, but outrageous. Generally, the doubly augmented and doubly diminished qualities are not used, although there are exceptions, such as the doubly augmented fourth appearing in the English augmented sixth chord. Removing the doubly augmented and diminished intervals as exceptions to the rule, 26 interval names are left. In modern parlance, multiple names for a single tone are called enharmonic, so we arrive at 26 enharmonic simple interval names, as shown in the smaller table below.

26 Traditional Enharmonic Simple Interval Names
P1 m2 M2 m3 M3 P4 a4 P5 m6 M6 m7 M7 P8
d2 a1 d3 a2 d4 a3 d5 d6 a5 d7 a6 d8 a7
0 1 2 3 4 5 6 7 8 9 10 11 12

These intervals are arranged into four columns below, where the leftmost box in each row shows the number of halfsteps in each interval. Arrows show navigation of the four columns in a zig-zag pattern like a board game, in order to show inversional relationships between intervals.

START



0P1, d2
1m2, a1
2M2, d3
3m3, a2





6a4
5P4, a3
4M3, d4




6d5
7P5, d6
8m6, a5



END



12P8, a7
11M7, d8
10m7, a6
9M6, d7

The two outer columns are inversional, and the two inner columns are inversional. The number of halfsteps in each pair of inversional intervals adds to 12. For example, from the inner columns, the perfect fourth (P4) is 5h and the perfect fifth (P5) is 7h: 5 + 7 = 12. Or looking at the outer columns, the Major second (M2) is 2h and the minor seventh (m7) is 10h: 2 + 10 = 12. Note that the augmented fourth (a4) and diminished fifth (d5) are both 6h in size, but are each given a separate row, so that the table is symmetrical.

Hunt System

In the Hunt system, ordinal sizes and qualities are called by the same names as in the traditional system, with adjacent qualities differing by 4 commas (). These qualities are then modified into different comma shift types by single comma shifts (1Ç = 5 JNDs). The final modification is an intonation quality, which is the precise indication of interval intonation in single JNDs (J). The table below shows these modifiers in order of increasing tuning precision from top to bottom.

Hunt
System of
Simple
Interval
Naming
ordinal size
written 1 2 3 4 5 6 7 8
spoken "unison" or "prime" "second" "third" "fourth" "fifth" "sixth" "seventh" "octave"
quality - Perfect intervals: 1, 4, 5, 8
written dd d P a aa
spoken "doubly diminished" "diminished" "Perfect" "augmented" "doubly augmented"
difference Ç, J ±4Ç, ±20J ±4Ç, ±20J ±4Ç, ±20J ±4Ç, ±20J
quality - Imperfect intervals: 2, 3, 6, 7
written d m M a
spoken "diminished" "minor" "Major" "augmented"
difference Ç, J ±4Ç, ±20J ±4Ç, ±20J ±4Ç, ±20J
comma shift type
written N S   L W
spoken "Narrow" "Small" (unshifted) "Large" "Wide"
difference Ç, J ±1Ç, ±5J ±1Ç, ±5J ±1Ç, ±5J ±1Ç, ±5J
JND intonation quality
written dd d m P M a aa
spoken "doubly diminished" "diminished" "minor" "Perfect" "Major" "augmented" "doubly augmented"
difference J ±1J ±1J ±1J ±1J ±1J ±1J

Shown below is a Pythagorean Major scale in 41ET.

Pythagorean Major Scale in 41ET
scale P1             M2             M3     P4             P5             M6             M7     P8
Ç
J
0
0
1
5
2
10
3
15
4
20
5
25
6
30
7
35
8
40
9
45
10
50
11
55
12
60
13
65
14
70
15
75
16
80
17
85
18
90
19
95
20
100
21
105
22
110
23
115
24
120
25
125
26
130
27
135
28
140
29
145
30
150
31
155
32
160
33
165
34
170
35
175
36
180
37
185
38
190
39
195
40
200
41
205

To this table we add staggered rows above and below the naturals showing how the diatonic pattern shifts according to the accidentals.

Chromatic Alteration of the Diatonic Intervals in 41ET
+4Ç a1             a2             a3     a4             a5             a6             a7     a8
± 0Ç P1             M2             M3     P4             P5             M6             M7     P8
-4Ç d1             m2             m3     d4             d5             m6             m7     d8
-8Ç dd1             d2             d3     dd4             dd5             d6             d7     dd8

This table can be chopped off at the sides, since simple intervals begin with the unison and end with the octave. The doubly diminished intervals can also be dispensed with, and the structure can be collapsed into a single row. A double Pythagorean chromatic scale is revealed, as shown below.

Double Pythagorean Chromatic Scale in 41ET
natural P1     m2 a1   d3 M2     m3 a2   d4 M3     P4 a3   d5 a4   d6 P5     m6 a5   d7 M6     m7 a6   d8 M7     P8
Ç
J
0
0
1
5
2
10
3
15
4
20
5
25
6
30
7
35
8
40
9
45
10
50
11
55
12
60
13
65
14
70
15
75
16
80
17
85
18
90
19
95
20
100
21
105
22
110
23
115
24
120
25
125
26
130
27
135
28
140
29
145
30
150
31
155
32
160
33
165
34
170
35
175
36
180
37
185
38
190
39
195
40
200
41
205

Note that the diminished second and augmented seventh do not appear on the table above, as they lie beyond the octave boundaries. There are many gaps in between the double tones of the double Pythagorean chromatic scale; whereas transposition of the diatonic intervals results in a chromatic superset in 12ET, this is clearly not the situation in 41ET. The gaps can be filled in by shifting the structure to the right (positive shift) and the left (negative shift) by comma steps of 41ET, keeping in mind that when this is done the diminished second and augmented seventh will shift within the octave boundaries. Both single and double shifting is allowed, so that a positive shift creates a large version (L) of an interval, and a double positive shift creates a wide version (W), while a negative shift creates a small version (S), and a double negative shift creates a narrow version (N), so that from each interval comes a group of five intervals called an interval family. Below, interval families of the double Pythagorean chromatic scale are shown.

Interval Families of the Double Pythagorean Chromatic Scale in 41ET
Wide, +2Ç   Wd2 W1     Wm2 Wa1   Wd3 WM2     Wm3 Wa2   Wd4 WM3     W4 Wa3   Wd5 Wa4   Wd6 W5     Wm6 Wa5   Wd7 WM6     Wm7 Wa6   Wd8 WM7  
Large, +1Ç Ld2 L1     Lm2 La1   Ld3 LM2     Lm3 La2   Ld4 LM3     L4 La3   Ld5 La4   Ld6 L5     Lm6 La5   Ld7 LM6     Lm7 La6   Ld8 LM7    
(no shift) ± 0Ç P1     m2 a1   d3 M2     m3 a2   d4 M3     P4 a3   d5 a4   d6 P5     m6 a5   d7 M6     m7 a6   d8 M7     P8
Small, -1Ç     Sm2 Sa1   Sd3 SM2     Sm3 Sa2   Sd4 SM3     S4 Sa3   Sd5 Sa4   Sd6 S5     Sm6 Sa5   Sd7 SM6     Sm7 Sa6   Sd8 SM7     S8 Sa7
Narrow, -2Ç   Nm2 Na1   Nd3 NM2     Nm3 Na2   Nd4 NM3     N4 Na3   Nd5 Na4   Nd6 N5     Nm6 Na5   Nd7 NM6     Nm7 Na6   Nd8 NM7     N8 Na7  
Ç 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

This table can be clarified by grouping intervals together by ordinal size, showing where changes in quality overlap, revealing 120 simple interval names for the comma steps of 41ET.

120 Hunt System Enharmonic Simple Interval Names
P1 Nm2
L1
Sm2 m2 Lm2 Wm2
NM2
SM2 M2 LM2 Sm3 m3 Lm3 Wm3
NM3
SM3 M3 LM3 S4 P4 L4 Na4
Sd5
Sa4
d5
a4
Ld5
La4
Wd5
S5 P5 L5 Sm6 m6 Lm6 Wm6
NM6
SM6 M6 LM6 Sm7 m7 Lm7 Wm7
NM7
SM7 M7 LM7 S8
WM7
P8
        Nd3 Sd3 d3 Ld3 Wd3
Nm3
Na2
WM2
Sa2 a2 La2 Wa2         Nd5 W4     N5 Wa4         Nd7 Sd7 d7 Ld7 Wd7
Nm7
Na6
WM6
Sa6 a6 La6 Wa6        
Ld2 Wd2 W1
Na1
Sa1 a1 La1 Wa1         Nd4 Sd4 d4 Ld4 Wd4
N4
Na3
NM3
Sa3 a3 La3 Wa3 Nd6 Sd6 d6 Ld6 Wd6
Wm6
W5
Na5
Sa5 a5 La5 Wa5         Nd8 Sd8 d8 Ld8 Wd8
N8
Na7 Sa7
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

We can compare this table of enharmonic interval names with the table of 26 traditional simple intervals, with empty fields added to show similarity of structure.

26 Traditional Enharmonic Simple Interval Names
P1 m2 M2 m3 M3 P4 a4 P5 m6 M6 m7 M7 P8
    d3 a2     d5     d7 a6    
d2 a1     d4 a3   d6 a5     d8 a7
0 1 2 3 4 5 6 7 8 9 10 11 12

The larger chart is an expanded version of the smaller one, having comma shifted interval families for of each traditional interval. With two positively comma shifted names (Large and Wide) and two negatively comma shifted names (Small anb Narrow) in each of the 26 interval families, one would expect to find not 120 enharmonic names, but rather 26 × 5 = 130. The missing 10 names consist of two versions each of the unison and octave which are outside of the octave boundaries, and three versions each of the diminshed second, augmented seventh which also fall outside of the boundaries. Of these 120 names, the 52 shown in the top row of the large table are preferred names. These preferred interval names are shown with 52 preferred Hunt system pitch names below.

Hunt System 52 Preferred Interval and Pitch Names
Preferred
Interval
Name
P1 Nm2
L1
Sm2 m2 Lm2 Wm2
NM2
SM2 M2 LM2 Sm3 m3 Lm3 Wm3
NM3
SM3 M3 LM3 S4 P4 L4 Na4
Sd5
Sa4
d5
a4
Ld5
La4
Wd5
S5 P5 L5 Sm6 m6 Lm6 Wm6
NM6
SM6 M6 LM6 Sm7 m7 Lm7 Wm7
NM7
SM7 M7 LM7 S8
WM7
P8
Preferred
Pitch
Name
D ≈ E
+ D
∼ E E + E ‡ E
≈ E
∼ E E + E ∼ F F + F ‡ F
≈ F
∼ F F + F ∼ G G + G ≈ G
∼ A
∼ G
A
G
+ A
+ G
‡ A
∼ A A + A ∼ B B + B ‡ B
≈ B
∼ B B + B ∼ C C + C ‡ C
≈ C
∼ C C + C ∼ D
‡ C
D
Ç 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

The scale centered on D clearly shows relationships between interval comma shift types and pitch comma shifts. The table below summarizes these relationships.

Interval Comma Shift Types and Pitch Comma Shifts
Interval
Comma Shift
Type
N

Narrow
S

Small
 

(unshifted)
L

Large
W

Wide
Pitch
Comma Shift *


(grave)


(sub)
 

(unshifted)
+

(super)


(acute)

* of an upper pitch in an interval where the lower pitch is unshifted.

Notice that interval comma shift types refer directly to size while pitch comma shifts refer directly to position. This is correct usage of pitch and interval modifiers according to Western tradition. Other approaches to interval naming are in error when they employ the modifiers sub, super, acute, or grave to the names of intervals. As discussed in Chapter 1 of this text, the prefixes super and sub mean above and below respectively. In traditional Western music these prefixes have never been used to refer to the sizes of intervals; they have only been used to refer to positions of scale degrees, such as the subtonic (below the tonic) and the supertonic (above the tonic). A pitch can be above or below another pitch, but interval names have never been above or below anything. Intervals are distances between pitches, and modifiers for intervals must refer directly to the size of the interval. The traditional interval qualities Major, minor, diminished, and augmented refer directly to relative sizes, not positions. The Hunt comma shift types Narrow, Small, Large and Wide maintain the precedent of Western tradition by referring directly to size, not position. This is an important point, which ties the Hunt system in with Western tradition and sets it apart from other attempts to codify intervals which are seriously flawed.

The comma shift type is not the last interval modifier in the Hunt system. Every interval is further defined by a JND intonation quality, of which there are nine possible versions for each interval, from triply diminished to triply augmented, specifying distinctions between interval sizes in single JND units. This would appear to allow for 41 × 9 = 369 intervals per octave; however, four of these intonations result from enharmonic inflections, so that the total is actually 41 × 5 = 205 intervals per octave. Although an infinite number of tones may be mapped to this structure, a basic set of perfect intervals serves as a default expected standard for good intonation. For each of the categorical 41ET intervals, there is a basic prime limit harmonic interval which is taken as the perfect intonation for that interval. The top row from the large table above shows the most common interval names. Adding this row of names to tables of preferred pitch names and basic 3-Limit, 5-Limit, 7-Limit, 11-Limit, and 13-Limit intervals reveals clear and meaningful relationships between Hunt pitch names, interval names, and harmonic limits. Each of the following tables shows the basic intervals of a harmonic limit, spelled starting from D. All remarks below concerning JND intonation quality assume the unshifted, uninflected pitch D as the lower pitch of each interval.

The 3-Limit generates all the standard minor, Major, perfect, augmented and diminished intervals of the 13-tone Pythagorean gamut — the unshifted and uninflected intervals to which all shifted and inflected intervals are compared. For example, the interval 243:256 is a minor second m2, spelled D : E. The interval 8:9 is a Major second M2, spelled D : E, etc. The blue highlights appearing at the center of the large field of JND inflections are naturals () showing that these intervals do not require JND adjustments from the 41ET circle of fifths.

13 basic 3-Limit Intervals
Ratio 1

1
    256

243
      9

8
    32

27
      81

64
    4

3
    729

512
1024

729
    3

2
    128

81
      27

16
    16

9
      243

128
    2

1
Interval P1     m2       M2     m3       M3     P4     d5 a4     P5     m6       M6     m7       M7     P8
Pitch D     E       E     F       F     G     A G     A     B       B     C       C     D




aa
a
P
d
dd
2
1
0
 
 
7
6
5
4
3
12
11
10
9
8
17
16
15
14
13
22
21
20
19
18
27
26
25
24
23
32
31
30
29
28
37
36
35
34
33
42
41
40
39
38
47
46
45
44
43
52
51
50
49
48
57
56
55
54
53
62
61
60
59
58
67
66
65
64
63
72
71
70
69
68
77
76
75
74
73
82
81
80
79
78
87
86
85
84
83
92
91
90
89
88
97
96
95
94
93
102
101
100
99
98
107
106
105
104
103
112
111
110
109
108
117
116
115
114
113
122
121
120
119
118
127
126
125
124
123
132
131
130
129
128
137
136
135
134
133
142
141
140
139
138
147
146
145
144
143
152
151
150
149
148
157
156
155
154
153
162
161
160
159
158
167
166
165
164
163
172
171
170
169
168
177
176
175
174
173
182
181
180
179
178
187
186
185
184
183
192
191
190
189
188
197
196
195
194
193
202
201
200
199
198
 
 
205
204
203
Ç 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Because perfect intonations of the 3-Limit intervals all lie directly on the 41ET circle of fifths, the intonation qualities can be shown directly in the table above next to the pitch inflections. Higher harmonic limits require the addition or subtraction of JNDs to fine tune intervals, such that intonation qualities cannot easily be shown directly with tables of the higher limits; therefore, an example of possible intonation qualities will be given for each of the higher harmonic limits. An example of possible intonation qualities for the perfect fourth P4 is shown in the table below.

Possible JND
Intonation
Qualities
of the Perfect
Fourth (P4)
dd.P4d.P4 m.P4P.P4 or P4M.P4 a.P4aa.P4
D:G D:G D:G D:G D:G D:G D:G

Because it is possible for the Perfect intonation of an interval to require an inflection other than the natural, as well as the fact that the lower pitch may also be inflected, augmentations and diminishments are allowed to continue multiplying in either direction, as will be shown for intervals of higher harmonic limits.

Basic 5-Limit intervals introduce Large minor and Small Major intervals. The Large minors have perfect intonation when they are made smaller by one JND, and the Small Majors have perfect intonation when they are made larger by one JND. For example, the interval 15:16 is a Large minor second Lm2, spelled D : + E, and the interval 4:5 is a Small Major third SM3, spelled D : ∼ F. The 5-Limit also introduces comma shifted versions of the perfect, diminished and augmented intervals, as shown below.

14 Basic 5-Limit Intervals
Ratio 1

1
81

80
    16

15
  10

9
        6

5
  5

4
        27

20
  45

32
64

45
  40

27
        8

5
  5

3
        9

5
  15

8
    160

81
2

1
Interval P1 L1     Lm2   SM2         Lm3   SM3         L4   Sa4 Ld5   S5         Lm6   SM6         Lm7   SM7     S8 P8
Pitch D + D     + E   ∼ E         + F   ∼ F         + G   ∼ G + A   ∼ A         + B   ∼ B         + C   ∼ C     ∼ D D




2
1
0
 
 
7
6
5
4
3
12
11
10
9
8
17
16
15
14
13
22
21
20
19
18
27
26
25
24
23
32
31
30
29
28
37
36
35
34
33
42
41
40
39
38
47
46
45
44
43
52
51
50
49
48
57
56
55
54
53
62
61
60
59
58
67
66
65
64
63
72
71
70
69
68
77
76
75
74
73
82
81
80
79
78
87
86
85
84
83
92
91
90
89
88
97
96
95
94
93
102
101
100
99
98
107
106
105
104
103
112
111
110
109
108
117
116
115
114
113
122
121
120
119
118
127
126
125
124
123
132
131
130
129
128
137
136
135
134
133
142
141
140
139
138
147
146
145
144
143
152
151
150
149
148
157
156
155
154
153
162
161
160
159
158
167
166
165
164
163
172
171
170
169
168
177
176
175
174
173
182
181
180
179
178
187
186
185
184
183
192
191
190
189
188
197
196
195
194
193
202
201
200
199
198
 
 
205
204
203
Ç 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Possible intonation qualities for the Small Major third SM3 are shown in the table below.

Possible JND
Intonation
Qualities
of the Small
Major third (SM3)
ddd.SM3dd.SM3 d.SM3m.SM3P.SM3 or SM3 M.SM3a.SM3
D:∼ F D:∼ F D:∼ F D:∼ F D:∼ F D:∼ F D:∼ F

Basic 7-Limit intervals introduce Small minor and Large Major intervals. The Small minors have perfect intonation when they are made larger by one JND, and the Large Majors have perfect intonation when they are made smaller by one JND. For example, the interval 27:28 is a Small minor second Sm2, spelled D : ∼ E, and the interval 7:8 is a Large Major second LM2, spelled D : + E. The 7-Limit also introduces comma shifted versions of the perfect intervals, as well as narrow and wide intervals near the octave boundaries, as shown below.

12 Basic 7-Limit Intervals
Ratio 1

1
64

63
28

27
          8

7
7

6
          9

7
21

16
                32

21
14

9
          12

7
7

4
          27

14
63

32
2

1
interval P1 Nm2 Sm2           LM2 Sm3           LM3 S4                 L5 Sm6           LM6 Sm7           LM7 WM7 P8
Pitch D ≈ E ∼ E           + E ∼ F           + F ∼ G                 + A ∼ B           + B ∼ C           + C ‡ C D




2
1
0
 
 
7
6
5
4
3
12
11
10
9
8
17
16
15
14
13
22
21
20
19
18
27
26
25
24
23
32
31
30
29
28
37
36
35
34
33
42
41
40
39
38
47
46
45
44
43
52
51
50
49
48
57
56
55
54
53
62
61
60
59
58
67
66
65
64
63
72
71
70
69
68
77
76
75
74
73
82
81
80
79
78
87
86
85
84
83
92
91
90
89
88
97
96
95
94
93
102
101
100
99
98
107
106
105
104
103
112
111
110
109
108
117
116
115
114
113
122
121
120
119
118
127
126
125
124
123
132
131
130
129
128
137
136
135
134
133
142
141
140
139
138
147
146
145
144
143
152
151
150
149
148
157
156
155
154
153
162
161
160
159
158
167
166
165
164
163
172
171
170
169
168
177
176
175
174
173
182
181
180
179
178
187
186
185
184
183
192
191
190
189
188
197
196
195
194
193
202
201
200
199
198
 
 
205
204
203
Ç 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Possible intonation qualities for the Large Major second LM2 are shown in the table below.

Possible JND
Intonation
Qualities
of the Large
Major second (LM2)
d.LM2m.LM2P.LM2 or LM2 M.LM2a.LM2aa.LM2aaa.LM2
D:+ E D:+ E D:+ E D:+ E D:+ E D:+ E D:+ E

Basic intervals of the 11-Limit and 13-Limit introduce Wide minor and Narrow Major intervals which lie in the same 41ET comma zone, two JNDs apart. The Wide minors have perfect intonation when they are made smaller by one JND, and the Narrow Majors have perfect intonation when they are made larger by one JND. For example, the interval 11:12 is a Narrow Major second NM2, spelled D : ≈ E, and the interval 12:13 is a Wide Minor second Wm2, spelled D : ‡ E. The 11-Limit and 13-Limit also introduce doubly comma shifted versions of the augmented and diminished intervals, as shown below.

6 Basic 11-Limit Intervals
Ratio 1

1
        12

11
            11

9
            11

8
    16

11
            18

11
            11

6
        2

1
Interval P1         NM2             Wm3             Sd5     La4             NM6             Wm7         P8
Pitch D         ≈ E             ‡ F             ∼ A     + G             ≈ B             ‡ C         D




2
1
0
 
 
7
6
5
4
3
12
11
10
9
8
17
16
15
14
13
22
21
20
19
18
27
26
25
24
23
32
31
30
29
28
37
36
35
34
33
42
41
40
39
38
47
46
45
44
43
52
51
50
49
48
57
56
55
54
53
62
61
60
59
58
67
66
65
64
63
72
71
70
69
68
77
76
75
74
73
82
81
80
79
78
87
86
85
84
83
92
91
90
89
88
97
96
95
94
93
102
101
100
99
98
107
106
105
104
103
112
111
110
109
108
117
116
115
114
113
122
121
120
119
118
127
126
125
124
123
132
131
130
129
128
137
136
135
134
133
142
141
140
139
138
147
146
145
144
143
152
151
150
149
148
157
156
155
154
153
162
161
160
159
158
167
166
165
164
163
172
171
170
169
168
177
176
175
174
173
182
181
180
179
178
187
186
185
184
183
192
191
190
189
188
197
196
195
194
193
202
201
200
199
198
 
 
205
204
203
Ç 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
6 Basic 13-Limit Intervals
Ratio 1

1
        13

12
            16

13
            18

13
    13

9
            13

8
            24

13
        2

1
Interval P1         Wm2             NM3             Na4     Wd5             Wm6             NM7         P8
Pitch D         ‡ E             ≈ F             ≈ G     ‡ A             ‡ B             ≈ C         D
Ç 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

The basic 3-Limit, 5-Limit, 7-Limit, 11-Limit, and 13-Limit intervals are summarized in the table below, showing relationships between interval names and intonations, pitch names and inflections, and harmonic ratios. NOTE: Ratios are given in the tables above; they are matched in this table by 205 degree and color.

Hunt System 41Ç × 5J = 205ET Scale                  
P
I
N
P1 Nm2
L1
Sm2 m2 Lm2 Wm2
NM2
SM2 M2 LM2 Sm3 m3 Lm3 Wm3
NM3
SM3 M3 LM3 S4 P4 L4 Na4
Sd5
Sa4
d5
a4
Ld5
La4
Wd5
S5 P5 L5 Sm6 m6 Lm6 Wm6
NM6
SM6 M6 LM6 Sm7 m7 Lm7 Wm7
NM7
SM7 M7 LM7 S8
WM7
P8
P
P
N
D ≈ E
+ D
∼ E E + E ‡ E
≈ E
∼ E E + E ∼ F F + F ‡ F
≈ F
∼ F F + F ∼ G G + G ≈ G
∼ A
∼ G
A
G
+ A
+ G
‡ A
∼ A A + A ∼ B B + B ‡ B
≈ B
∼ B B + B ∼ C C + C ‡ C
≈ C
∼ C C + C ∼ D
‡ C
D




2
1
0
 
 
7
6
5
4
3
12
11
10
9
8
17
16
15
14
13
22
21
20
19
18
27
26
25
24
23
32
31
30
29
28
37
36
35
34
33
42
41
40
39
38
47
46
45
44
43
52
51
50
49
48
57
56
55
54
53
62
61
60
59
58
67
66
65
64
63
72
71
70
69
68
77
76
75
74
73
82
81
80
79
78
87
86
85
84
83
92
91
90
89
88
97
96
95
94
93
102
101
100
99
98
107
106
105
104
103
112
111
110
109
108
117
116
115
114
113
122
121
120
119
118
127
126
125
124
123
132
131
130
129
128
137
136
135
134
133
142
141
140
139
138
147
146
145
144
143
152
151
150
149
148
157
156
155
154
153
162
161
160
159
158
167
166
165
164
163
172
171
170
169
168
177
176
175
174
173
182
181
180
179
178
187
186
185
184
183
192
191
190
189
188
197
196
195
194
193
202
201
200
199
198
 
 
205
204
203
Ç 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

The top row is labeled PIN to mean Preferrred Interval Name, and the second row PPN, meaning Preferrred Pitch Name. The third row gives a field of JNDs, showing the inlection of the upper pitch of each interval (when the lower pitch has a natural inflection) which is required to acheive perfect intonation, meaning with the "best tuning" of that interval, which in many cases means a tuning in which beating is nearly eliminated. The upper pitch of any interval fine tuned to a perfect JND intonation quality requires either a natural (), sharp (), or flat () on the upper pitch. In other words, perfect JND qualities are defined by intervals which are either uninflected, or inflected one JND larger or one JND smaller.

These basic intervals are arranged into four columns below showing harmonic ratios and interval names, where the leftmost box in each row shows the number of comma steps in each interval, and the rightmost box in each column shows the inflection required to achieve a Perfect JND intonation quality. The four columns are navigated in a zig-zag pattern like a board game, in order to show inversional relationships between intervals. The intervals sound below with C as the lower pitch

START



0P11:1 
1L1
Nm2
80:81
63:64

 
2Sm227:28
3m2243:256 
4Lm215:16
5Wm2
NM2
12:13
11:12

6SM29:10
7M28:9 
8LM27:8
9Sm36:7
10m327:32 
11Lm35:6





20Sa4
d5
32:45
729:1024

 
19Na4
Sd5
13:18
8:11

18L420:27
17P43:4 
16S416:21
15LM37:9
14M364:81 
13SM34:5
12NM3
Wm3
13:16
9:11





21Ld5
a4
45:64
512:729

 
22Wd5
La4
9:13
11:16

23S527:40
24P52:3 
25L521:32
26Sm69:14
27m681:128 
28Lm65:8
29Wm6
NM6
8:13
11:18




END



41P81:2 
40S8
WM7
81:160
32:63

 
39LM714:27
38M7128:243 
37SM78:15
36NM7
Wm7
13:24
6:11

35Lm75:9
34m79:16 
33Sm74:7
32LM67:12
31M616:27 
30SM63:5

The two outer columns are inversional, and the two inner columns are inversional. The number of comma steps in each pair of inversional intervals adds to 41, and the inflections invert from sharp to flat and vice versa. For example, from the inner columns, the Small fourth (S4) is 16Ç and requires a sharp inflection, while the Large fifth (L5) is 25Ç and requires a flat inflection. The comma step sizes add to 41 (16 + 25 = 41). Or looking at the outer columns, the Large Major second (LM2) is 8Ç and requires a flat inflection, while the Small minor seventh (Sm7) is 33Ç and requires a sharp inflection, and the comma step sizes add to 41 (7 + 34 = 41).

To learn which inflections are required for perfect intonation of the basic harmonic intervals, the following tables are helpful. The first table shows all intervals which lie directly on the central natural 41ET chain with no JND fine tuning needed. This includes the 3-Limit 13-tone Pythagorean chromatic gamut and the 7-Limit comma 63:64 (comma of Archytas or average comma).

Unshifted Basic Intervals*
Size3-Limit7-Limit Inflection
1          ±0J

to
2 m2243:256 M28:9 Nm2*63:64
3 m327:32 M364:81   
4 P43:4 a4729:1024   
5 d5512:729 P52:3   
6 m681:128 M616:27   
7 m79:16 M7128:243   
8         

* The Nm2 is an exception to the set of unshifted basic intervals.

The next table shows all intervals which span adjacent chains, requiring 1 JND widening of the interval to acheive perfect intonation. This includes all the Small and Narrow intervals, with two exceptions. The 5-Limit Small Major, 7-Limit Small minor, 11-Limit and 13-Limit Narrow Major intervals are included, with the exclusion of the Sd5 and Nm2, and the inclusion of the La4.

Small and Narrow Basic Intervals*
Size 5-Limit7-Limit 11-Limit13-Limit Inflection
1             +1J

to
2 SM29:10 Sm227:28 NM211:12   
3 SM34:5 Sm36:7    NM313:16
4 Sa432:45 S416:21 La4*11:16 Na413:18
5 S527:40         
6 SM63:5 Sm69:14 NM611:18   
7 SM78:15 Sm74:7    NM713:24
8 S881:160         

* The La4 is an exception to the set of Small and Narrow basic intervals.

The last table shows all intervals which span adjacent chains, requiring 1 JND narrowing of the interval to acheive perfect intonation. This includes all the Large and Wide intervals, with one exception. The 5-Limit Large Minor, 7-Limit Large Major, 11-Limit and 13-Limit Wide minor intervals are included, with the exclusion of the La4, and the inclusion of the Sd5.

Large and Wide Basic Intervals*
Size 5-Limit7-Limit 11-Limit13-Limit Inflection
1 L180:81          -1J

to
2 Lm215:16 LM27:8    Wm212:13
3 Lm35:6 LM37:9 Wm39:11   
4 L420:27         
5 Ld545:64 L521:32 Sd5*8:11 Wd59:13
6 Lm65:8 LM67:12    Wm68:13
7 Lm75:9 LM714:27 Wm76:11   
8            

* The Sd5 is an exception to the set of Large and Wide basic intervals.

The table below summarizes the relationships between comma shift types, limits, and JND intonation qualities for the basic harmonic intervals of the Hunt system.

Comma Shift TypesLimits and Qualities Included ExceptionPerfect Intonation Inflection
UnshiftedM,m,P,a,d Nm2 Nm2 ±0J, to
Small and Narrow SM Sm NM NM La4 +1J, to
Large and Wide Lm LM Wm Wm Sd5 -1J, to

Correct Interval Spelling & Naming

In the Hunt system, basic rational intervals derived in different ways can be spelled correctly, named correctly and tuned correctly. For example, consider the interval 16:25. How should this interval be spelled, and what should it be called? The Hunt system gives the following answers.

To find the derivation of any rational interval, the first task is to find its prime factorization. 25 breaks down to 52, or 5 × 5. So, we consider the harmonic interval 4:5. The interval 4:5 spelled from C spans up to sub E (C : E) which is a Major third, comma shifted once smaller, making it a small Major third (SM3). This is one of the basic categorical intervals of the system, as shown in the table.

13SM34:5

Since 25 is 5 × 5, what we know about 4:5 gives us everything we need to correctly spell and name 16:25, because it is two 4:5 SM3 intervals stacked one on top of the other. Correct interval spelling of the second stacked 4:5 gives us sub E up to grave G-sharp ( E : G), so the interval 16:25 spans from the C up to the grave G-sharp (C : G). This is an augmented fifth which is comma shifted twice smaller, giving us a Narrow augmented fifth (Na5). Unlike the SM3, the Na5 is not one of the basic categorical intervals of the system. It is enharmonic with a Small minor sixth and a Wide fifth, as shown in the table below.

Partial 41ET Interval Table
P5 L5
Nm6
Sm6 m6 Lm6 Wm6
NM6
SM6
         
Nd7
 
Sd7 d7
Ld6 Wd6 W5
Na5
Sa5 a5 La5 Wa5

So the Na5 will fall near the categorical interval Sm6.

26Sm69:14

SM3 and Na5 are partial names for the intervals we have looked at. Naming the intervals is not complete until the JND intonation quality is also determined. Because the SM3 is a basic categorical interval in the system, we can go to the table.

13SM34:5

The sharp in the table tells us that for the intonation quality to be perfect, the interval requires a 1 JND positive shift, so the 4:5 interval becomes C spans up to sharp sub E (C : E), a Perfect Small Major third, (P.SM3). The Na5 will be two such intervals, so that there must be 2 JND positive shifts, making 16:25 span from C up to doublesharp grave G-sharp (C : G), distinguishing it from the Sm6. The Na5 would be placed in the categorical table as shown below.

26Na5
Sm6
16:25
9:14

With the correct JND quality, the interval 16:25 would be called a Perfect Narrow augmented fifth, (P.Na5).

Mapping Intervals by Calculation

If an interval spelling is not known, or the interval is irrational or very complex, a few equations can be useful for determining a possible spelling and name for the interval. What is needed is a way to first find the interval category, and then the JND intonation quality. A cent value is a good place to start when determining what an interval is going to sound like, since it directly relates to 12ET. The equation below determines the cent value, where x is an interval expressed as a decimal value or a ratio a:b or b/a where a < b and 1 ≤ a:b ≥ 2. The three equations below will give identical results.

Cents Mapping
1200*Log2(x) 1200*Log(x)/log(2) 3986.314*Log(x)
Type in a decimal value or a ratio.

Interval:
   ¢

In the Hunt system, the interval category is a step of 41ET, where each step is treated as a comma (Ç). The equation used to map to 41ET is similar to that used to find the cent value, only the results should be rounded.

41ET Step (Ç) Mapping
41*Log2(x) 41*Log(x)/log(2) 136.2*Log(x)
Type in a decimal value or a ratio.

Interval:
   Ç

Next we find the JND intonation quality. There are many ways to do this. One relatively simple way is to map directly to 205ET, rounding the results. The JND quality is given by the last digit in the answer, as shown in the table.

JND (J) Mapping: 205ET Method
205*Log2(x) 205*Log(x)/log(2) 681*Log(x)
Last digit in result 3 or 8 4 or 9 0 or 5 1 or 6 2 or 7
JND -2 JND -1 JND ±0 JND +1 JND +2 JND
Type in a decimal value or a ratio.

Interval:
   205 Step:    J

All of these calculations can be put together with a lookup table giving the name of the 41ET scale step. Note that this name will be a default basic interval name from the table above, which does not take into account the spelling of the interval in letters.

Hunt System Interval Calculator
Type in a decimal value or a ratio.

Interval:
   ¢
= Ç   J

NEXT: Online Hunt System Calculators